Sustainable Growth Objective 6: Synthesis Report 2018 on Water and Sanitation (United Nations, 2018).
The Millennium Growth Targets Report 2015 (United Nations, 2015).
Progress on Family Consuming Water, Sanitation and Hygiene 2000–2017: Particular Give attention to Inequalities (UNICEF and WHO, 2019).
World Well being Observatory Information Repository (WHO, accessed 9 June 2022); https://www.who.int
Montgomery, M. A. & Elimelech, M. Water and sanitation in growing nations: together with well being within the equation. Environ. Sci. Technol. 41, 17–24 (2007).
Google Scholar
Combating Waterborne Illness on the Houshold Degree (WHO, 2007).
Outcomes of Spherical II of the WHO Worldwide Scheme to Consider Family Water Remedy Applied sciences (WHO, 2019).
Chu, C., Ryberg, E. C., Loeb, S. Ok., Suh, M.-J. & Kim, J.-H. Water disinfection in rural areas calls for unconventional photo voltaic applied sciences. Acc. Chem. Res. 52, 1187–1195 (2019).
Google Scholar
McGuigan, Ok. G. et al. Photo voltaic water disinfection (SODIS): a evaluate from bench-top to roof-top. J. Hazard. Mater. 235, 29–46 (2012).
Google Scholar
Fisher, M. B., Keenan, C. R., Nelson, Ok. L. & Voelker, B. M. Rushing up photo voltaic disinfection (SODIS): results of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli. J. Water Well being 6, 35–51 (2008).
Google Scholar
Shannon, M. A. et al. In Nanoscience and Expertise: A Assortment of Evaluations from Nature Journals (ed. Rodgers, P.) 337–346 (World Scientific, 2010).
Loeb, S., Li, C. & Kim, J.-H. Photo voltaic photothermal disinfection utilizing broadband-light absorbing gold nanoparticles and carbon black. Environ. Sci. Technol. 52, 205–213 (2018).
Google Scholar
Loeb, S. Ok. et al. Nanoparticle enhanced interfacial photo voltaic photothermal water disinfection demonstrated in 3-D printed flow-through reactors. Environ. Sci. Technol. 53, 7621–7631 (2019).
Google Scholar
Wigginton, Ok. R. & Kohn, T. Virus disinfection mechanisms: the function of virus composition, construction, and performance. Curr. Opin. Virol. 2, 84–89 (2012).
Google Scholar
Fraise, A. P., Lambert, P. A. & Maillard, J.-Y. Russell, Hugo & Ayliffe’s Ideas and Observe of Disinfection, Preservation and Sterilization (Wiley & Sons, 2008).
McDonnell, G. E. Antisepsis, Disinfection, and Sterilization: Sorts, Motion, and Resistance (Wiley & Sons, 2020).
Burch, J. D. & Thomas, Ok. E. Water disinfection for growing nations and potential for photo voltaic thermal pasteurization. Sol. Vitality 64, 87–97 (1998).
Google Scholar
Sampathkumar, Ok., Arjunan, T., Pitchandi, P. & Senthilkumar, P. Lively photo voltaic distillation—an in depth evaluate. Renew. Maintain. Vitality Rev. 14, 1503–1526 (2010).
Google Scholar
Wang, Z. et al. Pathways and challenges for environment friendly solar-thermal desalination. Sci. Adv. 5.7, aax0763 (2019).
Google Scholar
Pang, Y. et al. Photo voltaic-thermal water evaporation: a evaluate. ACS Vitality Lett. 5, 437–456 (2020).
Google Scholar
Outcomes of Spherical I of the WHO Worldwide Scheme to Consider Family Water Remedy Applied sciences (WHO, 2016).
Velmurugan, V., Gopalakrishnan, M., Raghu, R. & Srithar, Ok. Single basin photo voltaic nonetheless with fin for enhancing productiveness. Vitality Convers. Handle. 49, 2602–2608 (2008).
Google Scholar
Badran, O. O. & Abu-Khader, M. M. Evaluating thermal efficiency of a single slope photo voltaic nonetheless. Warmth Mass Transf. 43, 985–995 (2007).
Google Scholar
Luzi, S., Tobler, M., Suter, F. & Meierhofer, R. SODIS Handbook: Steering on Photo voltaic Water Disinfection (Eawag, 2016).
Loeb, S. Ok. et al. The know-how horizon for photocatalytic water therapy: dawn or sundown? Environ. Sci. Technol. 53, 2937–2947 (2019).
Google Scholar
Hirayama, H., Tsukada, Y., Maeda, T. & Kamata, N. Marked enhancement within the effectivity of deep-ultraviolet AlGaN light-emitting diodes through the use of a multiquantum-barrier electron blocking layer. Appl. Phys. Categorical 3, 031002 (2010).
Google Scholar
Shur, M. S. & Gaska, R. Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Gadgets 57, 12–25 (2009).
Google Scholar
Khan, A., Balakrishnan, Ok. & Katona, T. Ultraviolet light-emitting diodes primarily based on group three nitrides. Nat. Photonics 2, 77–84 (2008).
Google Scholar
Zhang, X. et al. World sensitivity evaluation of environmental, water high quality, photoreactivity, and engineering design parameters in daylight inactivation of viruses. Environ. Sci. Technol. 54, 8401–8410 (2020).
Google Scholar
Haag, W. R. & Yao, C. D. Charge constants for response of hydroxyl radicals with a number of ingesting water contaminants. Environ. Sci. Technol. 26, 1005–1013 (1992).
Google Scholar
Brown, J. & Clasen, T. Excessive adherence is critical to appreciate well being positive aspects from water high quality interventions. PLoS ONE 7, e36735 (2012).
Google Scholar
Trimmer, J. T. et al. Re-envisioning sanitation as a human-derived useful resource system. Environ. Sci. Technol. 54, 10446–10459 (2020).
Google Scholar
UN-Water World Evaluation and Evaluation of Sanitation and Consuming-Water (GLAAS) 2019 Report: Nationwide Programs to Help Consuming-Water, Sanitation and Hygiene: World Standing Report 2019 (WHO, 2019).
The United Nations World Water Growth Report 2019: Leaving No One Behind (United Nations Academic, Scientific and Cultural Group, 2019).
Enger, Ok. S., Nelson, Ok. L., Rose, J. B. & Eisenberg, J. N. The joint results of efficacy and compliance: a examine of family water therapy effectiveness in opposition to childhood diarrhea. Water Res. 47, 1181–1190 (2013).
Google Scholar
Hijnen, W., Beerendonk, E. & Medema, G. J. Inactivation credit score of UV radiation for viruses, micro organism and protozoan (oo)cysts in water: a evaluate. Water Res. 40, 3–22 (2006).
Google Scholar
Evaluating Family Water Remedy Choices: Well being-Based mostly Targets and Microbiological Efficiency Specs (WHO, 2011).
Kohn, T. & Nelson, Ok. L. Daylight-mediated inactivation of MS2 coliphage by way of exogenous singlet oxygen produced by sensitizers in pure waters. Environ. Sci. Technol. 41, 192–197 (2007).
Google Scholar
Tips for Consuming-Water High quality 4th edn (WHO, 2011).
Nationwide Major Consuming Water Rules: Lengthy Time period 2 Enhanced Floor Water Remedy Rule; Remaining Rule (US EPA, 2006).
Loeb, S., Hofmann, R. & Kim, J.-H. Past the pipeline: assessing the effectivity limits of superior applied sciences for photo voltaic water disinfection. Environ. Sci. Technol. Lett. 3, 73–80 (2016).
Google Scholar
Liu, B., Zhao, X., Terashima, C., Fujishima, A. & Nakata, Ok. Thermodynamic and kinetic evaluation of heterogeneous photocatalysis for semiconductor techniques. Phys. Chem. Chem. Phys. 16, 8751–8760 (2014).
Google Scholar
Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J. & Gernjak, W. Decontamination and disinfection of water by photo voltaic photocatalysis: current overview and tendencies. Catal. In the present day 147, 1–59 (2009).
Google Scholar
Cho, M., Chung, H., Choi, W. & Yoon, J. Linear correlation between inactivation of E. coli and OH radical focus in TiO2 photocatalytic disinfection. Water Res. 38, 1069–1077 (2004).
Google Scholar
Cho, M., Cates, E. L. & Kim, J.-H. Inactivation and floor interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res. 45, 2104–2110 (2011).
Google Scholar
Park, G. W. et al. Fluorinated TiO2 as an ambient light-activated virucidal floor coating materials for the management of human norovirus. J. Photochem. Photobiol. B 140, 315–320 (2014).
Google Scholar
Nelson, Ok. L. et al. Daylight-mediated inactivation of health-relevant microorganisms in water: a evaluate of mechanisms and modeling approaches. Environ. Sci. Course of. Impacts 20, 1089–1122 (2018).
Google Scholar
DeRosa, M. C. & Crutchley, R. J. Photosensitized singlet oxygen and its purposes. Coord. Chem. Rev. 233–234, 351–371 (2002).
Google Scholar
Dobrowsky, P. et al. Effectivity of microfiltration techniques for the elimination of bacterial and viral contaminants from floor and rainwater. Water Air Soil Pollut. 226, 33 (2015).
Google Scholar
Dobrowsky, P., Carstens, M., De Villiers, J., Cloete, T. & Khan, W. Effectivity of a closed-coupled photo voltaic pasteurization system in treating roof harvested rainwater. Sci. Whole Environ. 536, 206–214 (2015).
Google Scholar
Abraham, J., Plourde, B. & Minkowycz, W. Steady movement photo voltaic thermal pasteurization of ingesting water: strategies, units, microbiology, and evaluation. Renew. Vitality 81, 795–803 (2015).
Google Scholar
Spinks, A. T., Dunstan, R., Harrison, T., Coombes, P. & Kuczera, G. Thermal inactivation of water-borne pathogenic and indicator micro organism at sub-boiling temperatures. Water Res. 40, 1326–1332 (2006).
Google Scholar
Sanciolo, P. et al. Pasteurisation for Manufacturing of Class A Recycled Water: A Report of a Research Funded by the Australian Water Recycling Centre of Excellence Report No. 1922202665 (Australian Water Recycling Centre of Excellence, 2015).
Parry, J. & Mortimer, P. The warmth sensitivity of hepatitis A virus decided by a easy tissue tradition methodology. J. Med. Virol. 14, 277–283 (1984).
Google Scholar
Hewitt, J., Rivera‐Aban, M. & Greening, G. Analysis of murine norovirus as a surrogate for human norovirus and hepatitis A virus in warmth inactivation research. J. Appl. Microbiol. 107, 65–71 (2009).
Google Scholar
Maheshwari, G., Jannat, R., McCormick, L. & Hsu, D. Thermal inactivation of adenovirus kind 5. J. Virol. Strategies 118, 141–146 (2004).
Google Scholar
Strazynski, M., Krämer, J. & Becker, B. Thermal inactivation of poliovirus kind 1 in water, milk and yoghurt. Int. J. Meals Microbiol. 74, 73–78 (2002).
Google Scholar
Fujino, T. et al. The impact of heating in opposition to Cryptosporidium oocysts. J. Vet. Med. Sci. 64, 199–200 (2002).
Google Scholar
Fayer, R. Impact of excessive temperature on infectivity of Cryptosporidium parvum oocysts in water. Appl. Environ. Microbiol. 60, 2732–2735 (1994).
Google Scholar
Harp, J. A., Fayer, R., Pesch, B. A. & Jackson, G. J. Impact of pasteurization on infectivity of Cryptosporidium parvum oocysts in water and milk. Appl. Environ. Microbiol. 62, 2866–2868 (1996).
Google Scholar
Jarroll, E. L., Hoff, J. C. & Meyer, E. A. in Giardia and Giardiasis (eds Erlandsen, S. L. & Meyer, E. A.) 311–328 (Springer, 1984).
Ongerth, J. E., Johnson, R. L., MacDonald, S. C., Frost, F. & Stibbs, H. H. Again-country water therapy to forestall giardiasis. Am. J. Public Well being 79, 1633–1637 (1989).
Google Scholar
Schaefer, F. W., Rice, E. W. & Hoff, J. C. Elements selling in vitro excystation of Giardia muris cysts. Trans. R. Soc. Trop. Med. Hyg. 78, 795–800 (1984).
Google Scholar
World Photo voltaic Atlas 2.0 (World Financial institution Group, 2020); https://globalsolaratlas.information/
R Core Group. R: A language and atmosphere for statistical computing (R Basis for Statistical Computing, 2021).
Campolongo, F., Cariboni, J. & Saltelli, A. An efficient screening design for sensitivity evaluation of huge fashions. Environ. Mannequin. Softw. 22, 1509–1518 (2007).
Google Scholar
Saltelli, A. Sensitivity evaluation for significance evaluation. Threat Anal. 22, 579–590 (2002).
Google Scholar
Sobol, I. M. Sensitivity evaluation for non-linear mathematical fashions. Math. Modell. Comput. Exp. 1, 407–414 (1993).
Saltelli, A., Tarantola, S., Campolongo, F. & Ratto, M. Sensitivity Evaluation in Observe: A Information to Assessing Scientific Fashions Vol. 1 (Wiley On-line Library, 2004).
Zhang, T. et al. A worldwide perspective on renewable power sources: NASA’s prediction of worldwide power sources (energy) mission. In Proc. ISES World Congress 2007 Vol. 1–Vol. 5 (eds Goswami, D. Y. & Zhao, Y.) 2636–2640 (Springer, 2009).
Stackhouse, P. Jr. et al. Floor Meteorology and Photo voltaic Vitality (SSE) Launch 6.0 Methodology model 3.2.0 (NASA, 2016).
Stackhouse, P. Jr. et al. Supporting energy-related societal purposes utilizing NASA’s satellite tv for pc and modeling knowledge. In Proc. 2006 IEEE Worldwide Symposium on Geoscience and Distant Sensing (ed. Tsang, L.) 425–428 (IEEE, 2006).
World Growth Indicators (World Financial institution, accessed 9 June 2022); https://datacatalog.worldbank.org/dataset/world-development-indicators
Haitz, R. H., Craford, M. G. & Weissman, R. H. In Handbook of optics Vol. 2 (ed. Bass, M.) 121–129 (Optical Society of America, 1995).
García-Gil, Á., Abeledo-Lameiro, M. J., Gómez-Couso, H. & Marugán, J. Kinetic modeling of the synergistic thermal and spectral actions on the inactivation of Cryptosporidium parvum in water by daylight. Water Res. 185, 116226 (2020).
Google Scholar